本文实例讲述了C#实现将一个矩阵分解为对称矩阵与反称矩阵之和的方法。分享给大家供大家参考。具体如下:
1.理论依据
对任意n阶方阵A,有 A=(A+T(A))/2+(A-T(A))/2,其中T(A)是A的转置,(A+T(A))/2是一个对称矩阵,(A-T(A))/2是一个反称矩阵。
2.求出对称矩阵部分的函数
/// <summary> /// 把矩阵分解为对称矩阵与反称矩阵之和:对称矩阵 /// </summary> /// <param name="matrix">矩阵</param> /// <returns></returns> private static double[][] SymmetricPart(double[][] matrix) { //合法性校验:矩阵必须为方阵 if ( MatrixCR(matrix)[0] != MatrixCR(matrix)[1]) { throw new Exception("matrix 不是一个方阵"); } //矩阵中没有元素的情况 if (matrix.Length == 0) { return new double[][] { }; } //生成一个与matrix同型的空矩阵 double[][] result = new double[matrix.Length][]; for (int i = 0; i < result.Length; i++) { result[i] = new double[matrix[i].Length]; } //对称矩阵为 (A+T(A))/2 其中A为原矩阵,T(A)为A的转置矩阵 for (int i = 0; i < result.Length; i++) { for (int j = 0; j < result.Length; j++) { result[i][j] = (matrix[i][j] + matrix[j][i]) / 2.0; } } return result; }
3.求出反称矩阵部分的函数
/// <summary> /// 把矩阵分解为对称矩阵与反称矩阵之和:反称矩阵 /// </summary> /// <param name="matrix">矩阵</param> /// <returns></returns> private static double[][] SkewSymmetricPart(double[][] matrix) { //合法性校验:矩阵必须为方阵 if (MatrixCR(matrix)[0] != MatrixCR(matrix)[1]) { throw new Exception("matrix 不是一个方阵"); } //矩阵中没有元素的情况 if (matrix.Length == 0) { return new double[][] { }; } //生成一个与matrix同型的空矩阵 double[][] result = new double[matrix.Length][]; for (int i = 0; i < result.Length; i++) { result[i] = new double[matrix[i].Length]; } //反称矩阵为 (A-T(A))/2 其中A为原矩阵,T(A)为A的转置矩阵 for (int i = 0; i < result.Length; i++) { for (int j = 0; j < result.Length; j++) { result[i][j] = (matrix[i][j] - matrix[j][i]) / 2.0; } } return result; }
4.其他函数
/// <summary> /// 判断一个二维数组是否为矩阵 /// </summary> /// <param name="matrix">二维数组</param> /// <returns>true:是矩阵 false:不是矩阵</returns> private static bool isMatrix(double[][] matrix) { //空矩阵是矩阵 if (matrix.Length < 1) return true; //不同行列数如果不相等,则不是矩阵 int count = matrix[0].Length; for (int i = 1; i < matrix.Length; i++) { if (matrix[i].Length != count) { return false; } } //各行列数相等,则是矩阵 return true; } /// <summary> /// 计算一个矩阵的行数和列数 /// </summary> /// <param name="matrix">矩阵</param> /// <returns>数组:行数、列数</returns> private static int[] MatrixCR(double[][] matrix) { //接收到的参数不是矩阵则报异常 if (!isMatrix(matrix)) { throw new Exception("接收到的参数不是矩阵"); } //空矩阵行数列数都为0 if (!isMatrix(matrix) || matrix.Length == 0) { return new int[2] { 0, 0 }; } return new int[2] { matrix.Length, matrix[0].Length }; } /// <summary> /// 打印矩阵 /// </summary> /// <param name="matrix">待打印矩阵</param> private static void PrintMatrix(double[][] matrix) { for (int i = 0; i < matrix.Length; i++) { for (int j = 0; j < matrix[i].Length; j++) { Console.Write(matrix[i][j] + "\t"); //注意不能写为:Console.Write(matrix[i][j] + '\t'); } Console.WriteLine(); } }
5.Main函数代码及程序运行示例
static void Main(string[] args) { double[][] matrix = new double[][] { new double[] { 1, 2, 3 }, new double[] { 4, 5, 6 }, new double[] { 7, 8, 9 } }; Console.WriteLine("原矩阵"); PrintMatrix(matrix); Console.WriteLine("对称矩阵"); PrintMatrix(SymmetricPart(matrix)); Console.WriteLine("反称矩阵"); PrintMatrix(SkewSymmetricPart(matrix)); Console.ReadLine(); }
运行效果如下图所示:
希望本文所述对大家的C#程序设计有所帮助。
声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:notice#cainiaojc.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。