我们可以通过使用dplyr包的filter和grepl函数来做到这一点。
考虑mtcars数据集。
> data(mtcars) > head(mtcars) mpg cyl disp hp drat wt qsec vs am gear carb Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1 type Mazda RX4 Mazda RX4 Mazda RX4 Wag Mazda RX4 Wag Datsun 710 Datsun 710 Hornet 4 Drive Hornet 4 Drive Hornet Sportabout Hornet Sportabout Valiant Valiant mtcars$type [1] "Mazda RX4" "Mazda RX4 Wag" "Datsun 710" [4] "Hornet 4 Drive" "Hornet Sportabout" "Valiant" [7] "Duster 360" "Merc 240D" "Merc 230" [10] "Merc 280" "Merc 280C" "Merc 450SE" [13] "Merc 450SL" "Merc 450SLC" "Cadillac Fleetwood" [16] "Lincoln Continental" "Chrysler Imperial" "Fiat 128" [19] "Honda Civic" "Toyota Corolla" "Toyota Corona" [22] "Dodge Challenger" "AMC Javelin" "Camaro Z28" [25] "Pontiac Firebird" "Fiat X1-9" "Porsche 914-2" [28] "Lotus Europa" "Ford Pantera L" "Ferrari Dino" [31] "Maserati Bora" "Volvo 142E"
假设我们要过滤类型为Ferrari的行,则可以按以下步骤进行操作-
> dplyr::filter(mtcars, grepl('Ferrari', type)) mpg cyl disp hp drat wt qsec vs am gear carb type 1 19.7 6 145 175 3.62 2.77 15.5 0 1 5 6 Ferrari Dino
现在,如果要过滤类型为Merc或Datsun的行,则可以按以下步骤进行操作-
> dplyr::filter(mtcars, grepl('Merc|Datsun', type)) mpg cyl disp hp drat wt qsec vs am gear carb type 1 22.8 4 108.0 93 3.85 2.32 18.61 1 1 4 1 Datsun 710 2 24.4 4 146.7 62 3.69 3.19 20.00 1 0 4 2 Merc 240D 3 22.8 4 140.8 95 3.92 3.15 22.90 1 0 4 2 Merc 230 4 19.2 6 167.6 123 3.92 3.44 18.30 1 0 4 4 Merc 280 5 17.8 6 167.6 123 3.92 3.44 18.90 1 0 4 4 Merc 280C 6 16.4 8 275.8 180 3.07 4.07 17.40 0 0 3 3 Merc 450SE 7 17.3 8 275.8 180 3.07 3.73 17.60 0 0 3 3 Merc 450SL 8 15.2 8 275.8 180 3.07 3.78 18.00 0 0 3 3 Merc 450SLC
假设如果要过滤没有Mazda,Merc或Toyota类型的行,则可以按以下步骤进行操作-
> dplyr::filter(mtcars, !grepl('Mazda|Merc|Toyota', type)) mpg cyl disp hp drat wt qsec vs am gear carb type 1 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 Datsun 710 2 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 Hornet 4 Drive 3 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 Hornet Sportabout 4 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 Valiant 5 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 Duster 360 6 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 Cadillac Fleetwood 7 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 Lincoln Continental 8 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 Chrysler Imperial 9 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 Fiat 128 10 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 Honda Civic 11 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 Dodge Challenger 12 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 AMC Javelin 13 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 Camaro Z28 14 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 Pontiac Firebird 15 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 Fiat X1-9 16 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 Porsche 914-2 17 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 Lotus Europa 18 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 Ford Pantera L 19 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 Ferrari Dino 20 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 Maserati Bora 21 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 Volvo 142E