我们给了两个数字,分别是x和y,任务是找到两个数字之间的公质因数。可以通过首先计算两个数字之间的公共数,然后从公共因子列表中检查一个是质数来找到公共质数。
Input − x = 10 y = 20Output − Common prime factor of two numbers are: 2 5
说明-10和20之间的公质数因子只有2和5。
Input − x = 34 y = 12Output − Common prime factor of two numbers are: 2
说明-34和12之间的公质数是2。
输入两个数字x和y的值。
创建一个函数并在函数内部
声明一个临时变量,该变量将是数字x和y的最大公约数
创建一个从2开始直到小于或等于GCD的循环,并增加i
在循环内检查是否prime [i] && GCD%i = 0以及是否为true
打印i的值
打印结果
#include <bits/stdc++.h> using namespace std; #define MAX 100001 bool prime[MAX]; void SieveOfEratosthenes(){ // Create a boolean array "prime[0..n]" and initialize // all entries are true. A value in prime[i] will // finally be false if i is Not a prime, else true. memset(prime, true, sizeof(prime)); // 0 and 1 are not prime numbers prime[0] = false; prime[1] = false; for (int p = 2; p * p <= MAX; p++){ // If prime[p] is not changed, then it is a prime if (prime[p] == true){ // Updating all multiples of p as non-prime for (int i = p * p; i <= MAX; i += p){ prime[i] = false; } } } } // Function to find the common prime numbers void common_prime(int x, int y){ // Obtain the GCD of the given numbers int g = __gcd(x, y); // Find the prime divisors of the g for (int i = 2; i <= (g); i++){ // If i is prime and divisor of g if (prime[i] && g % i == 0){ cout << i << " "; } } } // main code int main(){ // Creating the Sieve SieveOfEratosthenes(); int x = 20, y = 30; cout<<"Common prime factor of two numbers are: "; common_prime(x, y); return 0; }
输出结果
如果我们运行上面的代码,它将生成以下输出-
Common prime factor of two numbers are: 2 5