python中的多线程实例教程

本文以实例形式较为详细的讲述了Python中多线程的用法,在Python程序设计中有着比较广泛的应用。分享给大家供大家参考之用。具体分析如下:

python中关于多线程的操作可以使用thread和threading模块来实现,其中thread模块在Py3中已经改名为_thread,不再推荐使用。而threading模块是在thread之上进行了封装,也是推荐使用的多线程模块,本文主要基于threading模块进行介绍。在某些版本中thread模块可能不存在,要使用dump_threading来代替threading模块。

一、线程创建

threading模块中每个线程都是一个Thread对象,创建一个线程有两种方式,一种是将函数传递到Thread对象中执行,另一种是从Thread继承,然后重写run方法(是不是跟Java很像)。

下面使用这两种方法分别创建一个线程并同时执行

import random, threading
def threadFunction():
  for i in range(10):
    print 'ThreadFuction - %d'%i
    time.sleep(random.randrange(0,2))


class ThreadClass(threading.Thread):
  def __init__(self):
    threading.Thread.__init__(self);
    
  def run(self):
    for i in range(10):
      print 'ThreadClass - %d'%i
      time.sleep(random.randrange(0,2))

if __name__ == '__main__':
  tFunc = threading.Thread(target = threadFunction);
  tCls = ThreadClass()
  tFunc.start()
  tCls.start()

执行结果如下,可以看到两个线程在交替打印。至于空行和一行多个输出,是因为Py的print并不是线程安全的,在当前线程的print打印了部分内容后,准备打印换行之前,被别的线程中的print抢先,在换行之前打印了其它的内容。

ThreadFuction - 0
ThreadFuction - 1
ThreadFuction - 2
ThreadClass - 0
ThreadFuction - 3
ThreadClass - 1
ThreadFuction - 4
ThreadClass - 2
ThreadClass - 3
ThreadClass - 4ThreadFuction - 5

ThreadClass - 5
ThreadClass - 6
ThreadClass - 7
ThreadClass - 8
ThreadFuction - 6ThreadClass - 9

ThreadFuction - 7
ThreadFuction - 8
ThreadFuction - 9

Thread类的构造函数定义如下

class threading.Thread(group=None, target=None, name=None, args=(), kwargs={})

group: 留作ThreadGroup扩展使用,一般没什么用
target:新线程的任务函数名
name:  线程名,一般也没什么用
args:  tuple参数
kwargs:dictionary参数

Thread类的成员变量和函数如下

start()         启动一个线程
run()           线程执行体,也是一般要重写的内容
join([timeout]) 等待线程结束
name            线程名
ident           线程ID
daemon          是否守护线程
isAlive()、is_alive()    线程是否存活
getName()、setName()     Name的get&set方法
isDaemon()、setDaemon()  daemon的get&set方法

这里的守护线程与Linux中的守护进程并不是一个概念。这里是指当所有守护线程退出后主程序才会退出,否则即使线程任务没有结束,只要不是守护线程,都会跟着主程序一起退出。而Linux中的守护进程定义正好相反,守护进程已经脱离父进程,不会随着父进程的结束而退出。

二、线程同步

线程同步是多线程中的一个核心问题,threading模块对线程同步有着良好的支持、包括线程特定数据、信号量、互斥锁、条件变量等。

1.线程特定数据

简而言之,线程特定数据就是线程独自持有的全局变量,相互之间的修改不会造成影响。

threading模块中使用local()方法生成一个线程独立对象,举例如下,其中sleep(1)是为了保证让子线程先运行完再运行接下来的语句。

data = threading.local()
def threadFunction():
  global data
  data.x = 3
  print threading.currentThread(), data.x
  
if __name__ == '__main__':
  data.x = 1
  tFunc = threading.Thread(target = threadFunction).start();
  time.sleep(1)
  print threading.current_thread(), data.x

<Thread(Thread-1, started 36208)> 3
<_MainThread(MainThread, started 35888)> 1

输出如上,可以看到,Thread-1中对data.x的修改并没有影响到主线程中data.x的值。

2.互斥锁

threading中定义了两种锁:threading.Lock和threading.RLock。两者的不同在于后者是可重入锁,也就是说在一个线程内重复LOCK同一个锁不会发生死锁,这与POSIX中的PTHREAD_MUTEX_RECURSIVE也就是可递归锁的概念是相同的。

关于互斥锁的API很简单,只有三个函数————分配锁,上锁,解锁。

threading.Lock()        分配一个互斥锁
acquire([blocking=1])   上锁(阻塞或者非阻塞,非阻塞时相当于try_lock,通过返回False表示已经被其它线程锁住。)
release()               解锁
下面通过一个例子来说明互斥锁的使用。在之前的例子中,多线程print会造成混乱的输出,这里使用一个互斥锁,来保证每行一定只有一个输出。

def threadFunction(arg):
  while True:
    lock.acquire()
    print 'ThreadFuction - %d'%arg
    lock.release()

if __name__ == '__main__':
  lock = threading.Lock()
  threading.Thread(target = threadFunction, args=(1,)).start();
  threading.Thread(target = threadFunction, args=(2,)).start();

3.条件变量

条件变量总是与互斥锁一起使用的,threading中的条件变量默认绑定了一个RLock,也可以在初始化条件变量的时候传进去一个自己定义的锁。

可用的函数如下

threading.Condition([lock]) 分配一个条件变量
acquire(*args)        条件变量上锁
release()          条件变量解锁
wait([timeout])       等待唤醒,timeout表示超时
notify(n=1)         唤醒最大n个等待的线程
notifyAll()、notify_all()  唤醒所有等待的线程
下面这个例子使用条件变量来控制两个线程交替运行

num = 0
def threadFunction(arg):
  global num
  while num < 10:
    cond.acquire()
    while num % 2 != arg:
      cond.wait()
    print 'Thread %d - %d' %(arg, num)
    num += 1
    cond.notify()
    cond.release()

if __name__ == '__main__':
  cond = threading.Condition()
  threading.Thread(target = threadFunction, args=(0,)).start();
  threading.Thread(target = threadFunction, args=(1,)).start();

输出如下

Thread 0 - 0
Thread 1 - 1
Thread 0 - 2
Thread 1 - 3
Thread 0 - 4
Thread 1 - 5
Thread 0 - 6
Thread 1 - 7
Thread 0 - 8
Thread 1 - 9
Thread 0 - 10

其实上面这个程序是有问题的,我们想打印的是0~9,但实际上10也被打印了出来,原因很简单,因为两个线程交替打印,使得num在一个线程中可能加2,从而导致10被打印出来,所以必须在打印前再次check。

相信本文所述对大家的Python程序设计有一定的借鉴价值。