Java模拟单链表和双端链表数据结构的实例讲解

模拟单链表

线性表:
线性表(亦作顺序表)是最基本、最简单、也是最常用的一种数据结构。
线性表中数据元素之间的关系是一对一的关系,即除了第一个和最后一个数据元素之外,其它数据元素都是首尾相接的。
线性表的逻辑结构简单,便于实现和操作。
在实际应用中,线性表都是以栈、队列、字符串等特殊线性表的形式来使用的。
线性结构的基本特征为:
1.集合中必存在唯一的一个“第一元素”;
2.集合中必存在唯一的一个 “最后元素” ;
3.除最后一个元素之外,均有 唯一的后继(后件);
4.除第一个元素之外,均有 唯一的前驱(前件)。

链表:linked list
链表是一种物理存储单元上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的
每个数据项都被包含在“链结点”(Link)中。
链结点是一个类的对象,这类可叫做Link。链表中有许多类似的链结点,每个Link中都中包含有一个对下一个链结点引用的字段next。
链表对象本身保存了一个指向第一个链结点的引用first。(若没有first,则无法定位)
链表不能像数组那样(利用下标)直接访问到数据项,而需要用数据间的关系来定位,即访问链结点所引用的下一个链结点,而后再下一个,直至访问到需要的数据
在链头插入和删除的时间复杂度为O(1),因为只需要改变引用的指向即可
而查找、删除指定结点、在指定结点后插入,这些操作都需要平均都需要搜索链表中的一半结点,效率为O(N)。
单链表:
以“结点的序列”表示线性表 称作线性链表(单链表)
是一种链式存取的数据结构,用一组地址任意的存储单元存放线性表中的数据元素。(这组存储单元既可以是连续的,也可以是不连续的)
链结点的结构:

存放结点值的数据域data;存放结点的引用 的指针域(链域)next
链表通过每个结点的链域将线性表的n个结点按其逻辑顺序链接在一起的。
每个结点只有一个链域的链表称为单链表(Single Linked List) , 一个方向, 只有后继结节的引用

/** 
 * 单链表:头插法 后进先出 
 * 将链表的左边称为链头,右边称为链尾。 
 * 头插法建单链表是将链表右端看成固定的,链表不断向左延伸而得到的。 
 * 头插法最先得到的是尾结点 
 * @author stone 
 */ 
public class SingleLinkedList<T> { 
   
  private Link<T> first;    //首结点 
  public SingleLinkedList() { 
     
  } 
   
  public boolean isEmpty() { 
    return first == null; 
  } 
   
  public void insertFirst(T data) {// 插入 到 链头 
    Link<T> newLink = new Link<T>(data); 
    newLink.next = first; //新结点的next指向上一结点 
    first = newLink; 
  } 
   
  public Link<T> deleteFirst() {//删除 链头 
    Link<T> temp = first; 
    first = first.next; //变更首结点,为下一结点 
    return temp; 
  } 
   
  public Link<T> find(T t) { 
    Link<T> find = first; 
    while (find != null) { 
      if (!find.data.equals(t)) { 
        find = find.next; 
      } else { 
        break; 
      } 
    } 
    return find; 
  } 
   
  public Link<T> delete(T t) { 
    if (isEmpty()) { 
      return null; 
    } else { 
      if (first.data.equals(t)) { 
        Link<T> temp = first; 
        first = first.next; //变更首结点,为下一结点 
        return temp; 
      } 
    } 
    Link<T> p = first; 
    Link<T> q = first; 
    while (!p.data.equals(t)) { 
      if (p.next == null) {//表示到链尾还没找到 
        return null; 
      } else { 
        q = p; 
        p = p.next; 
      } 
    } 
     
    q.next = p.next; 
    return p; 
  } 
   
  public void displayList() {//遍历 
    System.out.println("List (first-->last):"); 
    Link<T> current = first; 
    while (current != null) { 
      current.displayLink(); 
      current = current.next; 
    } 
  } 
   
  public void displayListReverse() {//反序遍历 
    Link<T> p = first, q = first.next, t; 
    while (q != null) {//指针反向,遍历的数据顺序向后 
      t = q.next; //no3 
      if (p == first) {// 当为原来的头时,头的.next应该置空 
        p.next = null; 
      } 
      q.next = p;// no3 -> no1 pointer reverse 
      p = q; //start is reverse 
      q = t; //no3 start 
    } 
    //上面循环中的if里,把first.next 置空了, 而当q为null不执行循环时,p就为原来的最且一个数据项,反转后把p赋给first 
    first = p;  
    displayList(); 
  } 
   
  class Link<T> {//链结点 
    T data;   //数据域 
    Link<T> next; //后继指针,结点    链域 
    Link(T data) { 
      this.data = data; 
    } 
    void displayLink() { 
      System.out.println("the data is " + data.toString()); 
    } 
  } 
   
  public static void main(String[] args) { 
    SingleLinkedList<Integer> list = new SingleLinkedList<Integer>(); 
    list.insertFirst(33); 
    list.insertFirst(78); 
    list.insertFirst(24); 
    list.insertFirst(22); 
    list.insertFirst(56); 
    list.displayList(); 
     
    list.deleteFirst(); 
    list.displayList(); 
     
    System.out.println("find:" + list.find(56)); 
    System.out.println("find:" + list.find(33)); 
     
    System.out.println("delete find:" + list.delete(99)); 
    System.out.println("delete find:" + list.delete(24)); 
    list.displayList(); 
    System.out.println("----reverse----"); 
    list.displayListReverse(); 
  } 
} 

打印

List (first-->last): 
the data is 56 
the data is 22 
the data is 24 
the data is 78 
the data is 33 
List (first-->last): 
the data is 22 
the data is 24 
the data is 78 
the data is 33 
find:null 
find:linked_list.SingleLinkedList$Link@4b71bbc9 
delete find:null 
delete find:linked_list.SingleLinkedList$Link@17dfafd1 
List (first-->last): 
the data is 22 
the data is 78 
the data is 33 
----reverse---- 
List (first-->last): 
the data is 33 
the data is 78 
the data is 22 

单链表:尾插法 、后进先出 ——若将链表的左端固定,链表不断向右延伸,这种建立链表的方法称为尾插法。 
尾插法建立链表时,头指针固定不动,故必须设立一个尾部的指针,向链表右边延伸, 
尾插法最先得到的是头结点。 

public class SingleLinkedList2<T> { 
   
  private Link<T> head;   //首结点 
  public SingleLinkedList2() { 
     
  } 
   
  public boolean isEmpty() { 
    return head == null; 
  } 
   
  public void insertLast(T data) {//在链尾 插入 
    Link<T> newLink = new Link<T>(data); 
    if (head != null) { 
      Link<T> nextP = head.next; 
      if (nextP == null) { 
        head.next = newLink; 
      } else { 
        Link<T> rear = null; 
        while (nextP != null) { 
          rear = nextP; 
          nextP = nextP.next; 
        } 
        rear.next = newLink; 
      } 
    } else { 
      head = newLink; 
    } 
  } 
   
  public Link<T> deleteLast() {//删除 链尾 
    Link<T> p = head; 
    Link<T> q = head; 
    while (p.next != null) {// p的下一个结点不为空,q等于当前的p(即q是上一个,p是下一个) 循环结束时,q等于链尾倒数第二个 
      q = p; 
      p = p.next; 
    } 
    //delete 
    q.next = null; 
    return p; 
  } 
   
  public Link<T> find(T t) { 
    Link<T> find = head; 
    while (find != null) { 
      if (!find.data.equals(t)) { 
        find = find.next; 
      } else { 
        break; 
      } 
    } 
    return find; 
  } 
   
  public Link<T> delete(T t) { 
    if (isEmpty()) { 
      return null; 
    } else { 
      if (head.data.equals(t)) { 
        Link<T> temp = head; 
        head = head.next; //变更首结点,为下一结点 
        return temp; 
      } 
    } 
    Link<T> p = head; 
    Link<T> q = head; 
    while (!p.data.equals(t)) { 
      if (p.next == null) {//表示到链尾还没找到 
        return null; 
      } else { 
        q = p; 
        p = p.next; 
      } 
    } 
     
    q.next = p.next; 
    return p; 
  } 
   
  public void displayList() {//遍历 
    System.out.println("List (head-->last):"); 
    Link<T> current = head; 
    while (current != null) { 
      current.displayLink(); 
      current = current.next; 
    } 
  } 
   
  public void displayListReverse() {//反序遍历 
    Link<T> p = head, q = head.next, t; 
    while (q != null) {//指针反向,遍历的数据顺序向后 
      t = q.next; //no3 
      if (p == head) {// 当为原来的头时,头的.next应该置空 
        p.next = null; 
      } 
      q.next = p;// no3 -> no1 pointer reverse 
      p = q; //start is reverse 
      q = t; //no3 start 
    } 
    //上面循环中的if里,把head.next 置空了, 而当q为null不执行循环时,p就为原来的最且一个数据项,反转后把p赋给head 
    head = p;  
    displayList(); 
  } 
   
  class Link<T> {//链结点 
    T data;   //数据域 
    Link<T> next; //后继指针,结点    链域 
    Link(T data) { 
      this.data = data; 
    } 
    void displayLink() { 
      System.out.println("the data is " + data.toString()); 
    } 
  } 
   
  public static void main(String[] args) { 
    SingleLinkedList2<Integer> list = new SingleLinkedList2<Integer>(); 
    list.insertLast(33); 
    list.insertLast(78); 
    list.insertLast(24); 
    list.insertLast(22); 
    list.insertLast(56); 
    list.displayList(); 
     
    list.deleteLast(); 
    list.displayList(); 
     
    System.out.println("find:" + list.find(56)); 
    System.out.println("find:" + list.find(33)); 
     
    System.out.println("delete find:" + list.delete(99)); 
    System.out.println("delete find:" + list.delete(78)); 
    list.displayList(); 
    System.out.println("----reverse----"); 
    list.displayListReverse(); 
  } 
} 

打印

List (head-->last): 
the data is 33 
the data is 78 
the data is 24 
the data is 22 
the data is 56 
List (head-->last): 
the data is 33 
the data is 78 
the data is 24 
the data is 22 
find:null 
find:linked_list.SingleLinkedList2$Link@4b71bbc9 
delete find:null 
delete find:linked_list.SingleLinkedList2$Link@17dfafd1 
List (head-->last): 
the data is 33 
the data is 24 
the data is 22 
----reverse---- 
List (head-->last): 
the data is 22 
the data is 24 
the data is 33 

模拟双端链表,以链表实现栈和队列
双端链表:
双端链表与传统链表非常相似.只是新增了一个属性-即对最后一个链结点的引用rear
这样在链尾插入会变得非常容易,只需改变rear的next为新增的结点即可,而不需要循环搜索到最后一个节点
所以有insertFirst、insertLast
删除链头时,只需要改变引用指向即可;删除链尾时,需要将倒数第二个结点的next置空,
而没有一个引用是指向它的,所以还是需要循环来读取操作

/** 
 * 双端链表 
 * @author stone 
 */ 
public class TwoEndpointList<T> { 
  private Link<T> head;   //首结点 
  private Link<T> rear;   //尾部指针 
   
  public TwoEndpointList() { 
     
  } 
   
  public T peekHead() { 
    if (head != null) { 
      return head.data; 
    } 
    return null; 
  } 
   
  public boolean isEmpty() { 
    return head == null; 
  } 
   
  public void insertFirst(T data) {// 插入 到 链头 
    Link<T> newLink = new Link<T>(data); 
    newLink.next = head; //新结点的next指向上一结点 
    head = newLink; 
  } 
   
  public void insertLast(T data) {//在链尾 插入 
    Link<T> newLink = new Link<T>(data); 
    if (head == null) { 
      rear = null; 
    } 
    if (rear != null) { 
      rear.next = newLink; 
    } else { 
      head = newLink; 
      head.next = rear; 
    } 
    rear = newLink; //下次插入时,从rear处插入 
     
  } 
   
  public T deleteHead() {//删除 链头 
    if (isEmpty()) return null; 
    Link<T> temp = head; 
    head = head.next; //变更首结点,为下一结点 
    if (head == null) { 
    <span style="white-space:pre">  </span>rear = head; 
    } 
    return temp.data; 
  } 
   
  public T find(T t) { 
    if (isEmpty()) { 
      return null; 
    } 
    Link<T> find = head; 
    while (find != null) { 
      if (!find.data.equals(t)) { 
        find = find.next; 
      } else { 
        break; 
      } 
    } 
    if (find == null) { 
      return null; 
    } 
    return find.data; 
  } 
   
  public T delete(T t) { 
    if (isEmpty()) { 
      return null; 
    } else { 
      if (head.data.equals(t)) { 
        Link<T> temp = head; 
        head = head.next; //变更首结点,为下一结点 
        return temp.data; 
      } 
    } 
    Link<T> p = head; 
    Link<T> q = head; 
    while (!p.data.equals(t)) { 
      if (p.next == null) {//表示到链尾还没找到 
        return null; 
      } else { 
        q = p; 
        p = p.next; 
      } 
    } 
    q.next = p.next; 
    return p.data; 
  } 
   
  public void displayList() {//遍历 
    System.out.println("List (head-->last):"); 
    Link<T> current = head; 
    while (current != null) { 
      current.displayLink(); 
      current = current.next; 
    } 
  } 
   
  public void displayListReverse() {//反序遍历 
    if (isEmpty()) { 
      return; 
    } 
    Link<T> p = head, q = head.next, t; 
    while (q != null) {//指针反向,遍历的数据顺序向后 
      t = q.next; //no3 
      if (p == head) {// 当为原来的头时,头的.next应该置空 
        p.next = null; 
      } 
      q.next = p;// no3 -> no1 pointer reverse 
      p = q; //start is reverse 
      q = t; //no3 start 
    } 
    //上面循环中的if里,把head.next 置空了, 而当q为null不执行循环时,p就为原来的最且一个数据项,反转后把p赋给head 
    head = p;  
    displayList(); 
  } 
   
  class Link<T> {//链结点 
    T data;   //数据域 
    Link<T> next; //后继指针,结点    链域 
    Link(T data) { 
      this.data = data; 
    } 
    void displayLink() { 
      System.out.println("the data is " + data.toString()); 
    } 
  } 
   
  public static void main(String[] args) { 
    TwoEndpointList<Integer> list = new TwoEndpointList<Integer>(); 
    list.insertLast(1); 
    list.insertFirst(2); 
    list.insertLast(3); 
    list.insertFirst(4); 
    list.insertLast(5); 
    list.displayList(); 
     
    list.deleteHead(); 
    list.displayList(); 
     
    System.out.println("find:" + list.find(6)); 
    System.out.println("find:" + list.find(3)); 
 
    System.out.println("delete find:" + list.delete(6)); 
    System.out.println("delete find:" + list.delete(5)); 
    list.displayList(); 
    System.out.println("----reverse----"); 
    list.displayListReverse(); 
  } 
} 

打印

List (head-->last): 
the data is 4 
the data is 2 
the data is 1 
the data is 3 
the data is 5 
List (head-->last): 
the data is 2 
the data is 1 
the data is 3 
the data is 5 
find:null 
find:3 
delete find:null 
delete find:5 
List (head-->last): 
the data is 2 
the data is 1 
the data is 3 
----reverse---- 
List (head-->last): 
the data is 3 
the data is 1 
the data is 2 

使用链表实现栈  ,用前插 单链表就能实现, 
本类采用双端链表实现:

public class LinkStack<T> { 
  private TwoEndpointList<T> datas; 
   
  public LinkStack() { 
    datas = new TwoEndpointList<T>(); 
  } 
   
  // 入栈 
  public void push(T data) { 
    datas.insertFirst(data); 
  } 
   
  // 出栈 
  public T pop() { 
    return datas.deleteHead(); 
  } 
   
  // 查看栈顶 
  public T peek() { 
    return datas.peekHead(); 
  } 
   
  //栈是否为空 
  public boolean isEmpty() { 
    return datas.isEmpty(); 
  } 
   
  public static void main(String[] args) { 
    LinkStack<Integer> stack = new LinkStack<Integer>(); 
    for (int i = 0; i < 5; i++) { 
      stack.push(i); 
    } 
    for (int i = 0; i < 5; i++) { 
      Integer peek = stack.peek(); 
      System.out.println("peek:" + peek); 
    } 
    for (int i = 0; i < 6; i++) { 
      Integer pop = stack.pop(); 
      System.out.println("pop:" + pop); 
    } 
     
    System.out.println("----"); 
    for (int i = 5; i > 0; i--) { 
      stack.push(i); 
    } 
    for (int i = 5; i > 0; i--) { 
      Integer peek = stack.peek(); 
      System.out.println("peek:" + peek); 
    } 
    for (int i = 5; i > 0; i--) { 
      Integer pop = stack.pop(); 
      System.out.println("pop:" + pop); 
    } 
  } 
} 

打印

peek:4 
peek:4 
peek:4 
peek:4 
peek:4 
pop:4 
pop:3 
pop:2 
pop:1 
pop:0 
pop:null 
---- 
peek:1 
peek:1 
peek:1 
peek:1 
peek:1 
pop:1 
pop:2 
pop:3 
pop:4 
pop:5 

链表实现 队列  用双端链表实现:

public class LinkQueue<T> { 
  private TwoEndpointList<T> list; 
   
  public LinkQueue() { 
    list = new TwoEndpointList<T>(); 
  } 
  //插入队尾 
  public void insert(T data) { 
    list.insertLast(data); 
  } 
  //移除队头 
  public T remove() { 
    return list.deleteHead(); 
  } 
  //查看队头 
  public T peek() { 
    return list.peekHead(); 
  } 
   
  public boolean isEmpty() { 
    return list.isEmpty(); 
  } 
   
  public static void main(String[] args) { 
    LinkQueue<Integer> queue = new LinkQueue<Integer>(); 
    for (int i = 1; i < 5; i++) { 
      queue.insert(i); 
    } 
    for (int i = 1; i < 5; i++) { 
      Integer peek = queue.peek(); 
      System.out.println("peek:" + peek); 
    } 
    for (int i = 1; i < 5; i++) { 
      Integer remove = queue.remove(); 
      System.out.println("remove:" + remove); 
    } 
     
    System.out.println("----"); 
     
    for (int i = 5; i > 0; i--) { 
      queue.insert(i); 
    } 
    for (int i = 5; i > 0; i--) { 
      Integer peek = queue.peek(); 
      System.out.println("peek2:" + peek); 
    } 
    for (int i = 5; i > 0; i--) { 
      Integer remove = queue.remove(); 
      System.out.println("remove:" + remove); 
    } 
  } 
} 

打印

peek:1 
peek:1 
peek:1 
peek:1 
remove:1 
remove:2 
remove:3 
remove:4 
---- 
peek2:5 
peek2:5 
peek2:5 
peek2:5 
peek2:5 
remove:5 
remove:4 
remove:3 
remove:2 
remove:1 

声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:notice#cainiaojc.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。